
Linear Regresion

April 25, 2023

1 Linear regresion
This is modeled after Morten Hjorth-Jensen https://compphysics.github.io/
MachineLearning/doc/web/course.html Please see his lecture notes and get deeper into
Machine Learning.

Linear regresion is a low level (or first step in) machine learning (ML), but all equations can be
derived analytically and important concepts for ML can be introduced, such as, the choice of model,
assumptions of error, cost function, regularizations, correlations, etc.

Some of the important concepts are:

• Data input and output, which we will denote by 𝐷:

𝐷 = {(𝑥0, 𝑦0), (𝑥1, 𝑦1), ...(𝑥𝑛−1, 𝑦𝑛−1)} (1)

Here 𝑥𝑖 is the input and 𝑦𝑖 is the onput. 𝑥𝑖 can be scalar or large vector of data. Similarly,
𝑦𝑖 might be a number, or, classification.

Examples: i) credit card information for customers: 𝑥𝑖 is the amount of loan, the income, the
marriage status, etc. The ouput is the prediction that the customer will default, i.e., true/false.
ii) handwriting recognition: The input 𝑥𝑖 are the pixels of the image, the output is a number or
a letter. iii) cancer data: The input 𝑥𝑖 are characteristics of the tumor such as its size, radius,
smoothness, symmetry, fractal dimension, etc., the output is 𝑀=malignant, 𝐵=benign.

• Model: basic assumption about the data to be fit.

For linear regression we assume that the data can be fit with continuous function ̃𝑦(𝑥), which is
deterministic, and the data has some extra random noise, normally distributed, i.e.,

𝑦𝑖 = ̃𝑦(𝑥𝑖) + 𝜀𝑖

where ̃𝑦(𝑥) can be expanded in terms of some continuous functions, and 𝜀 = 𝜂𝑁(0, 𝜎2), where 𝜂 is
some small number, and 𝑁 is normal (gaussian) distribution with vanishing mean and width 𝜎.

• Cost function (functional to be minimized):

The simplest is the mean average error (MAE), which is equivalent to 𝜒2:

𝐶 = 1
𝑛 ∑

𝑖
(̃𝑦(𝑥𝑖) − 𝑦𝑖)2

1

https://compphysics.github.io/MachineLearning/doc/web/course.html
https://compphysics.github.io/MachineLearning/doc/web/course.html

but different cost functions, such as Ridge regression and Lasso regression are often used.

The cross-entropy is used for binary models (discrete with two outcomes):

𝐶 = ∑
𝑖

𝑦𝑖 log(𝑝(𝑦𝑖 = 1|𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑦𝑖 = 1|𝑥𝑖))

• Covariance and Correlation matrix: It meassures correlation between different features
in data. It can be used to eliminate irrelevant parameters from the model or those that are
almost linearly dependent.

The covariance 𝑐𝑜𝑣(⃗𝑥𝑖, ⃗𝑥𝑗) is defined for two vectors that have many components ⃗𝑥𝑖 = 𝑥𝑛,𝑖 and
⃗𝑥𝑗 = 𝑥𝑛,𝑗 and takes the form

𝑐𝑜𝑣(⃗𝑥𝑖, ⃗𝑥𝑗) = 1
𝑛 ∑

𝑛
(𝑥𝑛,𝑖− < 𝑥𝑖 >)(𝑥𝑛,𝑗− < 𝑥𝑗 >) (2)

< 𝑥𝑖 >= 1
𝑛 ∑

𝑛
𝑥𝑛,𝑖 (3)

(4)

The diagonal parts of the covariance is the variance, i.e.,

𝑐𝑜𝑣(⃗𝑥𝑖, ⃗𝑥𝑖) ≡ 𝜎2
𝑖 = 1

𝑛 ∑
𝑛

(𝑥𝑛,𝑖− < 𝑥𝑖 >)2, (5)

which can be “taken out” of covariance matrix to define correlation matrix. The matrix elements
of the correlation matrix are simply given by

𝑐𝑜𝑟𝑟(⃗𝑥𝑖, ⃗𝑥𝑗) = 𝑐𝑜𝑣(⃗𝑥𝑖, ⃗𝑥𝑗)
√𝑐𝑜𝑣(⃗𝑥𝑖, ⃗𝑥𝑖) 𝑐𝑜𝑣(⃗𝑥𝑗, ⃗𝑥𝑗)

(6)

𝑐𝑜𝑟𝑟(⃗𝑥𝑖, ⃗𝑥𝑗) = 1
𝜎𝑖𝜎𝑗

1
𝑛 ∑

𝑛
(𝑥𝑛,𝑖− < 𝑥𝑖 >)(𝑥𝑛,𝑗− < 𝑥𝑗 >) (7)

(8)

1.0.1 Linear regression details

In linear regression we try to represent the continuous function ̃𝑦(𝑥) as a linear superposition of
known functions 𝑔𝑗(𝑥) with 𝑗 ∈ [0, ...𝑝 − 1]. We want to find the coefficients 𝛽𝑗 of the linear
superposition, i.e.,

̃𝑦(𝑥𝑖) =
𝑝−1
∑
𝑗=0

𝑔𝑗(𝑥𝑖)𝛽𝑗 (9)

The functions 𝑔𝑗(𝑥) can be a polynomial 𝑔𝑗(𝑥) = 𝑥𝑗 or the Fourier components 𝑔𝑗(𝑥) = 𝑒2𝜋𝑗𝑥 or
Legendre, Chebyshev polynomials, or any other complete set of functions.

2

Next we define the Design matrix X, which is a rectangular matrix with ℝ𝑛×𝑝, where 𝑛 is the
dimension of the input data components, and 𝑝 is the number of functions we will use in the
expansion

X =
⎡
⎢⎢
⎣

𝑔0(𝑥0) 𝑔1(𝑥0) ⋯ 𝑔𝑝−1(𝑥0)
𝑔0(𝑥1) 𝑔1(𝑥1) ⋯ 𝑔𝑝−1(𝑥1)

⋯
𝑔0(𝑥𝑛−1) 𝑔1(𝑥𝑛−1) ⋯ 𝑔𝑝−1(𝑥𝑛−1)

⎤
⎥⎥
⎦

(10)

Normaly we expect 𝑛 < 𝑝 so that data is not overfitted.

We also define the vector of unknown parameters 𝛽𝑇 = [𝛽0, 𝛽1, ...𝛽𝑝−1] and in terms of the two, we
can write a matrix equation

̃𝑦 = X𝛽 (11)

The design matrix contains the complexity of the model, and is defined solely by the input data and
the choice of the model. The model is linear in the unknown parameters 𝛽, hence linear regression.
The cost function 𝐶 for the model will gives us the quality of the fit. It is now a funcion of the
unknown parameters

𝐶(𝛽) = 1
𝑛

𝑛−1
∑
𝑖=0

(𝑦𝑖 − ̃𝑦(𝑥𝑖))2 = 1
𝑛

𝑛−1
∑
𝑖=0

(𝑦𝑖 − (X𝛽)𝑖)2 (12)

and should be minimized, i.e., 𝜕𝐶(𝛽)
𝜕𝛽 = 0. When the minimum is reached, we obtain the optimized

parameters, which we will call 𝛽∗ = min𝐶(𝛽), 𝛽 ∈ ℝ𝑝.

The derivative
𝜕𝐶(𝛽)

𝜕𝛽
can readily be obtained

𝜕𝐶(𝛽)
𝜕𝛽𝑙

= 𝜕
𝜕𝛽𝑙

1
𝑛

𝑛−1
∑
𝑖=0

(𝑦𝑖 − 𝑋𝑖𝑗𝛽𝑗)2 (13)

Here we use Einstein notation in which the sum over the repeated indices is assumed.

𝜕𝐶(𝛽)
𝜕𝛽𝑙

= 1
𝑛 ∑

𝑖
2(𝑦𝑖 − 𝑋𝑖𝑗𝛽𝑗)(−1)𝑋𝑖𝑙 = −2 1

𝑛(X𝑇 (𝑦 − X𝛽))𝑙 (14)

The minimum is reached at 𝜕𝐶(𝛽)
𝜕𝛽 = 0:

X𝑇 𝑦 = X𝑇 X𝛽∗ (15)

or

𝛽∗ = (X𝑇 X)−1X𝑇 𝑦 (16)

3

and therefore optimal ̃𝑦 is

̃𝑦 = X𝛽∗ = X(X𝑇 X)−1X𝑇 𝑦 (17)

The last equation says that the optimal model is given by the projection of data 𝑦 into a space
spanned by functions 𝑔𝑗(𝑥𝑖) as encoded in design matrix X.

One can readily check that X(X𝑇 X)−1X𝑇 has the property of a projector 𝑃 2 = 𝑃 .

How do we know this is minimum? We compute the second derivative, and determine its sign. The
second derivative is

𝜕2𝐶(𝛽)
𝜕𝛽𝑗𝜕𝛽𝑙

= 𝜕
𝜕𝛽𝑗

1
𝑛 ∑

𝑖
2(𝑦𝑖 − 𝑋𝑖𝑗𝛽𝑗)(−1)𝑋𝑖𝑙 = 2

𝑛 ∑
𝑖

𝑋𝑖𝑗𝑋𝑖𝑙 = 2
𝑛(X𝑇 X)𝑗𝑙 (18)

We will show thet X𝑇 X is positive definite matrix, hence, 𝐶(𝛽∗) is a global minimum.

If functions 𝑔𝑗(𝑥) are linearly dependent (or features in ML are linearly dependent) the design
matrix 𝑋 can be singular, and 𝐷𝑒𝑡(X𝑇 X) = 0. In that case the inversion of this matrix is not
possible, and we need to either * perform a pseudo-inverse, or, * regularize the cost function.

If 𝐷𝑒𝑡(X𝑇 X) = 0 we can still use SVD decomposion to inverse the matrix. This is called pseudo-
inverse, as the real inverse does not exist.

If matrix is singular or is non-quadratic matrix, we can still define pseudo-inverse 𝐴+, such that
𝐴𝐴+𝐴 = 𝐴 and 𝐴+𝐴𝐴+ = 𝐴+, where 𝐴𝐴+ and 𝐴+𝐴 is Hermitian, but is not identity matrix. This
pseudoinverse is achieved by SVD.

For any matrix (quadratic or non-quadratic), the following decomposition exists:

X = 𝑈𝜎𝑉 †

where 𝑈 and 𝑉 are unitary matrices (𝑈†𝑈 = 1 and 𝑉 †𝑉 = 1), and 𝜎 is diagonal matrix with real
singular values on diagonal. If X ∈ ℝ𝑛×𝑝 then 𝑈 ∈ ℝ𝑛×𝑛 and 𝑉 ∈ ℝ𝑝×𝑝 and 𝜎 is rectangular matrix
with min(𝑛, 𝑝) values.

Next we use SVD for Design matrix X to obtain

X = 𝑈𝜎𝑉 𝑇 ,

and therefore
X𝑇 = 𝑉 𝜎𝑈𝑇 .

Note that the number of singular values is 𝑝 < 𝑛. We than have

X𝑇 X = 𝑉 𝜎𝑈𝑇 𝑈𝜎𝑉 𝑇 = 𝑉 𝜎2𝑉 𝑇

and now the pseudo-inverse of this matrix is

(X𝑇 X)−1 = 𝑉 1
𝜎2 𝑉 𝑇

where the singular values that vanish are omitted.

4

We also point out that
X𝑇 X𝑉 = 𝑉 𝜎2

which shows that 𝑉 are eigenvectors of matrix X𝑇 X and 𝜎2 are eigenvalues of the same matrix.
Since 𝜎 ∈ ℝ therefore 𝜎2 ≥ 0. We just proved previous claim that the second derivative of the cost
function is positive and hence 𝛽∗ is a global minimum. Namely

𝜕2𝐶(𝛽)
𝜕𝛽𝑗𝜕𝛽𝑙

= 2
𝑛(X𝑇 X)𝑗𝑙 = 2

𝑛(𝑉 𝜎2𝑉 𝑇)𝑗𝑙

is positive definite matrix because all eigenvalues are positive.

Finally, we also express 𝛽∗ and ̃𝑦 in terms of singular values 𝜎,

𝛽∗ = (X𝑇 X)−1X𝑇 𝑦 = 𝑉 1
𝜎𝑈𝑇 𝑦

and
ỹ𝑖 = (X𝛽)𝑖 = ∑

𝑙,𝜎𝑙>0
𝑈𝑖𝑙𝑈𝑇

𝑙𝑗 𝑦𝑗.

Note that 𝑈𝑈𝑇 = 1, but the sum above runs only over components for which 𝜎𝑙 > 0, hence
∑′

𝑙 𝑈𝑖𝑙𝑈𝑇
𝑙𝑗 above is a projection and not unity. Only if 𝑋 is a square non-singular matrix than

∑′
𝑙 𝑈𝑖𝑙𝑈𝑇

𝑙𝑗 is unity and ̃𝑦 = 𝑦.
As mentioned above, different types of cost functions exist, which regularize the singularity of X𝑇 𝑋
in different ways. The most famous are Ridge regression and Lasso regression.

In Ridge regression we add lagrange multiplayer 𝜆 such that ∑𝑗 𝛽2
𝑗 (or equivalently ||𝛽||22) does

not explode. At the same time, it also regularizes the inverse, and hence allows one to avoid
pseudo-inverse.

The Ridge cost function is

𝐶(𝛽) = 1
𝑛

𝑛−1
∑
𝑖=0

(𝑦𝑖 − ̃𝑦𝑖)2 + 𝜆 1
𝑛

𝑝−1
∑
𝑗=0

𝛽2
𝑗

which is a constrained optimization that requires ||𝛽||22 to be as small as possible (𝜆 > 0), hence
the purpose of such regularization is to prohibit the parameters 𝛽 to become too large. In ML
we typically not optimize 𝐶 with respect to 𝜆, but we rather keep it is hyperparameter, which is
another parameter of the model that allows one to tune the model to best describe the data.

We can take the derivative of the cost function as before, to obtain

𝜕𝐶(𝛽)
𝜕𝛽𝑙

= 1
𝑛 ∑

𝑖
2(𝑦𝑖 − 𝑋𝑖𝑗𝛽𝑗)(−1)𝑋𝑖𝑙 + 2

𝑛𝜆𝛽𝑙 = 2 1
𝑛(X𝑇 (X𝛽 − 𝑦) + 𝜆𝛽)𝑙 (19)

which has a minimum at
(X𝑇 X + 𝜆)𝛽∗ = X𝑇 𝑦

or
𝛽∗ = (X𝑇 X + 𝜆)−1X𝑇 𝑦

5

which clearly avoids singularity of the inverse X𝑇 X because 𝜆 > 0 and X𝑇 X is positive definite
matrix.

The parameter 𝜆 is also called shrinkage parameter, because it removes singular values which are
small, i.e., removes less important degrees of freeedom.

To see that, we use SVD decomposition of X = 𝑈𝜎𝑉 𝑇 as before, and we see that X𝑇 X + 𝜆 =
𝑉 (𝜎2 + 𝜆)𝑉 𝑇 , hence

𝛽∗
𝑅𝑖𝑑𝑔𝑒 = (X𝑇 X + 𝜆)−1X𝑇 𝑦 = 𝑉 1

𝜎2 + 𝜆𝑉 𝑇 𝑉 𝜎𝑈𝑇 𝑦 = 𝑉 𝜎
𝜎2 + 𝜆𝑈𝑇 𝑦

hence when compared to regular linear regression, Ridge regression replaces

1
𝜎 → 𝜎

𝜎2 + 𝜆
which essentially removes singular values which are much smaller than 𝜆, i.e., we keep only singular
values which are comparable or larger than 𝜆 in the final result, shrinking the set of parameters 𝛽.
Another type of regression is called Lasso regression, which adds absolute values of parameters 𝛽
to cost function, i.e.,

𝐶(𝛽) = 1
𝑛

𝑛−1
∑
𝑖=0

(𝑦𝑖 − ̃𝑦𝑖)2 + 𝜆 1
𝑛

𝑝−1
∑
𝑗=0

|𝛽𝑗|

which gives derivative

𝜕𝐶(𝛽)
𝜕𝛽𝑙

= 1
𝑛 ∑

𝑖
2(𝑦𝑖 − 𝑋𝑖𝑗𝛽𝑗)(−1)𝑋𝑖𝑙 + 1

𝑛𝜆 sign(𝛽𝑙) = 2 1
𝑛(X𝑇 (X𝛽 − 𝑦) + 𝜆

2 sign(𝛽))𝑙 (20)

and requires one to solve

X𝑇 y = X𝑇 X𝛽∗ + 𝜆
2 sign(𝛽∗) (21)

No close analytical solution for 𝛽∗ exists for this equation, and only numerical solution can be
found.

1.0.2 Simple linear regression model using scikit-learn

We start with comparing our linear regression results with those of Scikit-Learn library.

To demonstrate capabilities, we will solve the problem of nuclear binding energies.

A popular and physically intuitive model which can be used to parametrize the experimental binding
energies of all nucleai in periodic table is the so-called liquid drop model. The ansatz is based
on the following expression

𝐵𝐸(𝑁, 𝑍) = 𝑎1𝐴 − 𝑎2𝐴2/3 − 𝑎3
𝑍2

𝐴1/3 − 𝑎4
(𝑁 − 𝑍)2

𝐴 ,

where 𝐴 stands for the number of nucleons and the 𝑎𝑖s are parameters which are determined by a
fit to the experimental data.

To arrive at the above expression we have assumed that we can make the following assumptions:

6

• There is a volume term 𝑎1𝐴 proportional with the number of nucleons (the energy is also an
extensive quantity). When an assembly of nucleons of the same size is packed together into
the smallest volume, each interior nucleon has a certain number of other nucleons in contact
with it. This contribution is proportional to the volume.

• There is a surface energy term 𝑎2𝐴2/3. The assumption here is that a nucleon at the surface
of a nucleus interacts with fewer other nucleons than one in the interior of the nucleus and
hence its binding energy is less. This surface energy term takes that into account and is
therefore negative and is proportional to the surface area.

• There is a Coulomb energy term 𝑎3
𝑍2

𝐴1/3 . The electric repulsion between each pair of protons
in a nucleus yields less binding.

• There is an asymmetry term 𝑎4
(𝑁−𝑍)2

𝐴 . This term is associated with the Pauli exclusion
principle and reflects the fact that the proton-neutron interaction is more attractive on the
average than the neutron-neutron and proton-proton interactions.

We will fit the binding energy 𝐵𝐸 as a function of 𝐴 with functions 𝑔0(𝑥) = 1, 𝑔1(𝑥) = 𝑥,
𝑔2(𝑥) = 𝑥2/3, 𝑔3(𝑥) = 𝑥−1/3, 𝑔4(𝑥) = 1/𝑥.
The binding energies are in file “NucleousEnergy.dat”. The Python code follows here.

[3]: # Binding energy in terms of nucleous weight A==x, is in this file
from numpy import *
from pylab import *

na_data = loadtxt('NucleousEnergy.dat').T
x,y = na_data
plot(x,y)
show()

7

[4]: # Seeting up the Design matrix
X=zeros((len(x),5))
X[:,0]=1 # all functions we need
X[:,1]=x
X[:,2]=x**(2/3)
X[:,3]=x**(-1/3)
X[:,4]=1./x

[5]: from sklearn.linear_model import LinearRegression

Using scikit to get coefficients
lg = LinearRegression()
clf=lg.fit(X,y)
yt=clf.predict(X) # widetilde(y)

This is an equivalent code, but using our own equations derived above.

[6]: # matrix inversion to find beta
Beta = dot(linalg.inv(X.T @ X) @ X.T, y)
and then make the prediction
ytilde = X @ Beta

8

[7]: # comparing the regression with data and our regression with those from the␣
↪library

plot(x,yt,label='Regression library')
plot(x,y, label='Data')
plot(x,ytilde,label='Regression ours')
xlabel('A')
ylabel('Binding Energy')
legend(loc='best')
show()

[9]: from sklearn.metrics import mean_squared_error, r2_score,␣
↪mean_squared_log_error, mean_absolute_error

more information from library
print('The intercept alpha: \n', lg.intercept_)
print('Coefficient beta : \n', lg.coef_)
print('Our coefficients: \n', Beta)
The mean squared error
print("Mean squared error: %.2f" % mean_squared_error(y, yt))

9

Explained variance score: 1 is perfect prediction ␣
↪

print('Variance score: %.2f' % r2_score(y, yt))
Mean squared log error
print('Mean squared log error: %.2f' % mean_squared_log_error(y, yt))
Mean absolute error
print('Mean absolute error: %.2f' % mean_absolute_error(y, yt))

The intercept alpha:
5.294399745619717
Coefficient beta :
[0.00000000e+00 -2.96611194e-02 2.01719003e-01 1.08078025e+01
-4.03097597e+01]
Our coefficients:
[5.29439975e+00 -2.96611194e-02 2.01719003e-01 1.08078025e+01
-4.03097597e+01]
Mean squared error: 0.02
Variance score: 0.95
Mean squared log error: 0.00
Mean absolute error: 0.05

The function meansquarederror gives us the mean square error, a risk metric corresponding to
the expected value of the squared (quadratic) error or loss defined as

𝑀𝑆𝐸(𝑦, ̃𝑦) = 1
𝑛

𝑛−1
∑
𝑖=0

(𝑦𝑖 − ̃𝑦𝑖)2,

This function is equivalent to the 𝜒2 function defined above.

Another quantity is the mean absolute error (MAE), a risk metric corresponding to the expected
value of the absolute error loss using 𝑙1-norm. The MAE is defined as follows

MAE(𝑦, ̃𝑦) = 1
𝑛

𝑛−1
∑
𝑖=0

|𝑦𝑖 − ̃𝑦𝑖| .

We present the squared logarithmic (quadratic) error

MSLE(𝑦, ̃𝑦) = 1
𝑛

𝑛−1
∑
𝑖=0

(log𝑒(1 + 𝑦𝑖) − log𝑒(1 + ̃𝑦𝑖))2,

where log𝑒(𝑥) stands for the natural logarithm of 𝑥. This error estimate is best to use when targets
having exponential growth, such as population counts, average sales of a commodity over a span of
years etc.

Finally, another cost function is the Huber cost function used in robust regression.

The rationale behind this possible cost function is its reduced sensitivity to outliers in the data set.
In our discussions on dimensionality reduction and normalization of data we will meet other ways
of dealing with outliers.

10

1.0.3 Libraries

A useful Python package for data analysics is pandas, which is an open source library providing
high-performance data structures and data analysis tools for Python. pandas stands for panel
data, a term borrowed from econometrics.

pandas has two major classes, the DataFrame class with two-dimensional data objects and the
class Series with a focus on one-dimensional data objects. Both classes allow you to index data
easily as we will see in the examples below.

pandas allows you also to perform mathematical operations on the data, spanning from simple
reshapings of vectors and matrices to statistical operations.

The following simple example shows how we can make tables of our data. Here we define a data
set which includes names, place of birth and date of birth, and displays the data in an easy to read
way.

[10]: import pandas as pd
from IPython.display import display
data = {'First Name': ["Frodo", "Bilbo", "Aragorn II", "Samwise"],

'Last Name': ["Baggins", "Baggins","Elessar","Gamgee"],
'Place of birth': ["Shire", "Shire", "Eriador", "Shire"],
'Date of Birth T.A.': [2968, 2890, 2931, 2980]
}

data_pandas = pd.DataFrame(data)
display(data_pandas)

print('Standard Python print:', data)

First Name Last Name Place of birth Date of Birth T.A.
0 Frodo Baggins Shire 2968
1 Bilbo Baggins Shire 2890
2 Aragorn II Elessar Eriador 2931
3 Samwise Gamgee Shire 2980

Standard Python print: {'First Name': ['Frodo', 'Bilbo', 'Aragorn II',
'Samwise'], 'Last Name': ['Baggins', 'Baggins', 'Elessar', 'Gamgee'], 'Place of
birth': ['Shire', 'Shire', 'Eriador', 'Shire'], 'Date of Birth T.A.': [2968,
2890, 2931, 2980]}

In the above we have imported pandas with the shorthand pd, the latter has become the standard
way we import pandas. We make then a list of various variables and reorganize the aboves lists
into a DataFrame and then print out a neat table with specific column labels as Name, place of
birth and date of birth. Displaying these results, we see that the indices are given by the default
numbers from zero to three. pandas is extremely flexible and we can easily change the above
indices by defining a new type of indexing as

[11]: data_pandas = pd.DataFrame(data,index=['Frodo','Bilbo','Aragorn','Sam'])
display(data_pandas)

First Name Last Name Place of birth Date of Birth T.A.

11

https://pandas.pydata.org/

Frodo Frodo Baggins Shire 2968
Bilbo Bilbo Baggins Shire 2890
Aragorn Aragorn II Elessar Eriador 2931
Sam Samwise Gamgee Shire 2980

Thereafter we display the content of the row which begins with the index Aragorn

[12]: display(data_pandas.loc['Aragorn'])

First Name Aragorn II
Last Name Elessar
Place of birth Eriador
Date of Birth T.A. 2931
Name: Aragorn, dtype: object

We can easily append data to this, for example

[13]: new_hobbit = {'First Name': ["Peregrin"],
'Last Name': ["Took"],
'Place of birth': ["Shire"],
'Date of Birth T.A.': [2990]
}

#data_pandas=data_pandas.append(pd.DataFrame(new_hobbit, index=['Pippin']))

data_pandas=pd.concat([data_pandas,pd.DataFrame(new_hobbit, index=['Pippin'])])
display(data_pandas)

First Name Last Name Place of birth Date of Birth T.A.
Frodo Frodo Baggins Shire 2968
Bilbo Bilbo Baggins Shire 2890
Aragorn Aragorn II Elessar Eriador 2931
Sam Samwise Gamgee Shire 2980
Pippin Peregrin Took Shire 2990

Here are other examples where we use the DataFrame functionality to handle arrays, now with
more interesting features for us, namely numbers. We set up a matrix of dimensionality 10 × 5
and compute the mean value and standard deviation of each column. Similarly, we can perform
mathematical operations like squaring the matrix elements and many other operations.

[14]: import numpy as np
import pandas as pd
from IPython.display import display
np.random.seed(100) # some arbitrary random seed to always start␣

↪the same
setting up a 10 x 5 matrix
rows = 10
cols = 5
a = np.random.randn(rows,cols) # normal distributed random numbers (10x5)
df = pd.DataFrame(a) # df is now panda DataFrame

12

display(df)
print(df.mean()) # easy to get mean of each column

our_mean = [sum(a[:,i])/rows for i in range(cols)]
print('our mean=', our_mean)

print(df.std()) # easy to get standard deviation
Note that we have to use 1/(rows-1), which is more precise than 1/rows!
our_s = [np.sqrt(sum((a[:,i]-our_mean[i])**2)/(rows-1)) for i in range(cols)]
print('our sigma=', our_s)

0 1 2 3 4
0 -1.749765 0.342680 1.153036 -0.252436 0.981321
1 0.514219 0.221180 -1.070043 -0.189496 0.255001
2 -0.458027 0.435163 -0.583595 0.816847 0.672721
3 -0.104411 -0.531280 1.029733 -0.438136 -1.118318
4 1.618982 1.541605 -0.251879 -0.842436 0.184519
5 0.937082 0.731000 1.361556 -0.326238 0.055676
6 0.222400 -1.443217 -0.756352 0.816454 0.750445
7 -0.455947 1.189622 -1.690617 -1.356399 -1.232435
8 -0.544439 -0.668172 0.007315 -0.612939 1.299748
9 -1.733096 -0.983310 0.357508 -1.613579 1.470714

0 -0.175300
1 0.083527
2 -0.044334
3 -0.399836
4 0.331939
dtype: float64
our mean= [-0.1753003003007798, 0.08352721390288316, -0.044333972284362075,
-0.39983564919591685, 0.33193916850842475]
0 1.069584
1 0.965548
2 1.018232
3 0.793167
4 0.918992
dtype: float64
our sigma= [1.069584393754908, 0.9655479229776867, 1.0182315502230195,
0.7931668855918225, 0.918992356527374]

Thereafter we can select specific columns only and plot final results

[15]: df.columns = ['First', 'Second', 'Third', 'Fourth', 'Fifth']
df.index = np.arange(1,11)

display(df)
print('<Second>=', df['Second'].mean())
print('Info of DataFrame=', df.info())

13

print(df.describe())

First Second Third Fourth Fifth
1 -1.749765 0.342680 1.153036 -0.252436 0.981321
2 0.514219 0.221180 -1.070043 -0.189496 0.255001
3 -0.458027 0.435163 -0.583595 0.816847 0.672721
4 -0.104411 -0.531280 1.029733 -0.438136 -1.118318
5 1.618982 1.541605 -0.251879 -0.842436 0.184519
6 0.937082 0.731000 1.361556 -0.326238 0.055676
7 0.222400 -1.443217 -0.756352 0.816454 0.750445
8 -0.455947 1.189622 -1.690617 -1.356399 -1.232435
9 -0.544439 -0.668172 0.007315 -0.612939 1.299748
10 -1.733096 -0.983310 0.357508 -1.613579 1.470714

<Second>= 0.08352721390288316
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 1 to 10
Data columns (total 5 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 First 10 non-null float64
1 Second 10 non-null float64
2 Third 10 non-null float64
3 Fourth 10 non-null float64
4 Fifth 10 non-null float64
dtypes: float64(5)
memory usage: 480.0 bytes
Info of DataFrame= None

First Second Third Fourth Fifth
count 10.000000 10.000000 10.000000 10.000000 10.000000
mean -0.175300 0.083527 -0.044334 -0.399836 0.331939
std 1.069584 0.965548 1.018232 0.793167 0.918992
min -1.749765 -1.443217 -1.690617 -1.613579 -1.232435
25% -0.522836 -0.633949 -0.713163 -0.785061 0.087887
50% -0.280179 0.281930 -0.122282 -0.382187 0.463861
75% 0.441264 0.657041 0.861676 -0.205231 0.923602
max 1.618982 1.541605 1.361556 0.816847 1.470714

[16]: from pylab import plt, mpl
mpl.rcParams['font.family'] = 'serif'

#usual type plotting
plt.plot(df.cumsum(), lw=2.0)

#using pandas makes it easier
df.cumsum().plot(lw=2.0, figsize=(10,6))
plt.show()

14

#using bars
df.plot.bar(figsize=(10,6), rot=15)
plt.show()

15

Example of a nice print of 4 × 4 matrix

16

[17]: b = np.arange(16).reshape((4,4))
print(b)
df1 = pd.DataFrame(b)
print(df1)

[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]
[12 13 14 15]]

0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15

and many other operations.

The Series class is another important class included in pandas. You can view it as a specialization
of DataFrame but where we have just a single column of data. It shares many of the same features
as _DataFrame. As with DataFrame, most operations are vectorized, achieving thereby a high
performance when dealing with computations of arrays, in particular labeled arrays. As we will
see below it leads also to a very concice code close to the mathematical operations we may be
interested in. For multidimensional arrays, we recommend strongly xarray. xarray has much of
the same flexibility as pandas, but allows for the extension to higher dimensions than two.

[]:

17

http://xarray.pydata.org/en/stable/

	Linear regresion
	Linear regression details
	Simple linear regression model using scikit-learn
	Libraries

